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The proof of Farrell (1968. Ann. Math. Statist. 26 518-522) is adapted to the 
special problems presented by discrete problems. Continuity of the risk functions is 
veritied, sequential subcompactness is verified, and a necessary and sufficient 
condition for admissibility proven. In the discrete problems considered one obtains 
pointwise convergence of the sequence of Bayes estimators to the admissible 
estimator. This last property is crucial to further development of the decision theory 
given in Brown and Farrell (1985. Ann. Math. Statist. 13 706726). a 1988 Academic 

Press, lnc 

1. INTRODUCTION 

The purpose of this paper is to provide a self-contained and elementary 
proof of a necessary and sufficient condition for admissibility of estimators 
of a multivariate parameter vector ,I in certain discrete problems relative to 
quadratic type losses. We will discuss p-dimensional (column) parameter 
vectors and the lattice Np of p x 1 vectors x having nonnegative integer 
coordinates. For 1 6 i < p let ei be the p x 1 unit vector with ith coordinate 
equal to one. Then we may describe the discrete probabilities as 

c(A) h(x) fi (ef Ap, (1.1) 
i= I 

a description which includes the multivariate Poisson and negative 
binomial families, having differing parameter spaces. The necessary and 
sufhcient condition is stated as Theorem 2.6, is similar to Stein [6] and 
Farrell [4]. In fact, to apply Farrell [4] it is necessary to prove the first 
four lemmas of Section 2, that is, write most of this paper. 
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This paper was originally Section 2 of Brown and Farrell [Z] but was 
taken out of that paper in order to shorten that paper. Brown and Farrell, 
op. cit., needed only a necessary condition, pointwise limits of sequences of 
Bayes estimators, condition (2.5(2)) of this paper, not the full strength of 
Theorem 2.6. 

The complete Theorem 2.6 is needed as a foundation for Johnstone [S], 
who must know the existence of a sequence of a priori measures putting 
unit mass at a specified parameter value. The original motivation for this 
paper was Johnstone’s [5] Ph.D. thesis. 

In applications such as Brown [l] it was necessary to restrict con- 
sideration to estimators having bounded risk functions. In fact Brown, op. 
cit., believed that he had proved admissible estimators had everywhere 
finite risk. But Johnstone, in a personal communication, has shown 
Brown’s argument to be incorrect and the question remains open for the 
multivariate normal mean vector estimation problem. For the discrete 
problems that we consider, with the parameter vector 1 restricted to have 
only positive coordinates, in Section 3 an example is given of an admissible 
estimator having infinite risk on a half-space. 

2. NOTATIONS, PRELIMINARY DECISION THEORY 

In this paper x, y will be p-dimensional column vectors, x having 
nonnegative integer entries, y having nonnegative real number entries. We 
write R’; for the parameter space. For the multivariate Poisson measures 
RP, =(O, co)x ... x (0, 00) and for the multivariate negative binomial 
RP, = (0, 1) x ... x (0, 1). The decision theory depends on the lattice of x 
values being unbounded but needs only that RP, be an open set containing 
intervals (A 1 A0 < A < 1,j whenever I,, 1 r E RP, . Limit measures obtained 
will in general be supported on the closure of RP, but in this paper it is not 
necessary to name the closure set. 

The discrete probability density functions are of the geometric form 

c(A) h(x) lCX), A’“‘= fi (e;~)“:“! (2.1) 
i= 1 

Then 1= Lao c(A) h(x) A’“‘. In estimation of the parameter vector I, the 
loss and risk are computed by 

L(A, 6(x)) = f (efl)“J (ef(6(x) - A))*, 
i= I 

(2.2) 

R(1,6) = c c(l) h(x) ,?(I) f (efn)“; (ef(b(x) - A))*, 
x 2 0 i=l 

683:24/l-4 
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where 6( ) is a p x 1 column vector and the loss function being used is L, 
the risk function R. 

General theory is presented in this paper but applications are dependent 
on the specification of the parameters X, , . . . . aP in the function. In particular 
the character of the stepwise reduction of the sample space discussed in 
Brown and Farrell [2] is dependent on the choice of these parameters and 
they restrict the discussion to two special cases: 

Case 1. ffi=c(?= ... =clP=O; 

Case2. fx1=a2= ... =aP= -1. 

The Case 2 loss is used by Johnstone [S] and Tsui [7]. 
In general the notation of (2.2) is simplified by writing 

R(R, 6) = f: 1 c(A) h(x) ;~(+‘I’I) (ei(6(x) -A))*. (2.3) 

In the sequel we will say a parameter set A is monotone provided A E A and 
A’ < 1 implies A’ E A. The finite risk set of an estimator is defined by 
A*(s) = {A (R(A, 6) < cc ). It is understood that A*(6) c RP, . 

LEMMA 2.1. rf 6 is admissible then A*( 6) is nonempty and monotone. If 
Aa is a boundary point of A*(6) then lim, _ >.,, j.S j,U R(I, 6) = R(&,, 6). Zf this 
limit is infinite then lim, _ l.0 R(A, 6) = R(i,, 6). 

Proof: If R(R,, 6) < cc then Cf=, C.rbO (e: 6(x))’ h(x) Ah’) < co. This 
series is absolutely convergent and A0 80 so that if 0 <A < A, by the 
comparison test CT= 1 C, 3 o (e:6(x))‘h(x) A(-‘) < co, the risk is an infinite 
series that is dominated term by term by the terms 2((efS(x))’ + 
(efd,)‘) ~(2,) h(x) Ad: + WI’ so that for A having only nonzero entries, 
I Q Ao, the M-test for uniform convergence applies and lim, _ 10 R(1, 6) = 
R(R,, 6). The risk function is lower semicontinuous on the closure of RI; 
so at a boundary point I, of A*(s) such that R(A,, 6)= co, it follows 
that lim, _ h infR(A,6)=limj,,,,R(R,6)=cc. 1 

LEMMA 2.2. If A0 is interior to A*(S) then R( ,6) is continuous at A0 

Proof c(A)-l=cx,o h(x) A(I) is an analytic function of A, hence 
continuous in 1 E RP, . ;l(rtet) is likewise continuous on RP, . If lo is interior to 
A*(6) then there exist A1 <&,<A,, A, and 1, in A*(s), such that 
{AlI, <II <A2} has interior, and A1 has no zero entries. By the argument 
for Lemma 2.1, the series C, b o (e:( 6(A) - A))’ h(x) ;ttx) converges uniformly 
in A. in the rectangle. Hence continuity at A0 follows. 
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LEMMA 2.3. Let B be the set of risk functions of nonrandomized 
estimators. The set 9 is sequentially subcompact (c.J, Farrell [4] for a 
definition). 

Proof. Let {6,, n >, 1) be a sequence of estimators. If 
lim, + m inf R(I, 6,) = 0~) for all A E RP, then the conclusion of the lemma 
follows. Suppose for some 1 that lim, _ E inf R(l, 6,) < CO. We may choose 
a subsequence {mk} such that for all i, 

SUP 1 h(x) lcx'(e~(d,,(x) - A))’ < CQ. 
n x 2 0 

For those x such that h(x) > 0, since A’-“> 0, it follows that sup,, 
lef 6,&x)( < 00. By a diagonalization argument there exists a subsequence 
(m,} such that if h(x) > 0 then lim, _ X e: 6&x) = e: 6(x) exists. By Fatou’s 
lemma, for all 3, E RP, , 

lim inf R(1,6,,J 
n-m 

2 2 1 c(A) h(x)~‘.‘+‘1’1’l~~m_f(e:(6,“(x)-6))2 
i= I .x20 

= R(A, 6). (2.4) 

Since the estimator 6 is nonrandomized the risk function R( ,6) E 9 and 
the lemma is proven. 1 

In the sequel we let ,4 = { &, i > 1) be a countable dense subset of RP, , 
and A,= {A,, . . . . A,,}. {A,} =A, will be the “preferred” parameter value. 
Let .5%Yn be the set of vectors @?JS) with 

9,d6)‘= (R(A,, 6), . . . . R(l.,, 6)) 

taken over all nonrandomized estimators 6. We let &?,,, be the set ( y( 
exists XE BE, y ax}. The ordering here means componentwise the 
components of y are greater than those of x. 

LEMMA 2.4. Ye,, is a closed and convex set. 

Proof. Let yq ~9~~) and yq >@JS,). Let y= lim,,, y,. On a sub- 
sequence bmp , for all A, (2.4) holds and S(x) = lim, --t o. S,l(x) is a nonran- 
domized estimator. Thus R,(6) E sn3 and R,(6) < y. Hence y E &?,,> , and 
&‘,,r is closed. To show convexity note that aR(A, 6) + (1 -a) R(l, b) > 
R(A, a8 + (1 - a) F), so the mixture is in gnz . 1 
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LEMMA 2.5. If E > 0 and 6 is admissible then there exists an no such that 
ifn > n, then R,(6) - @, 4 ST,, z , where Z, is the n x 1 unit vector with one in 
the first coordinate position. 

Prooj By contradiction. If there is a sequence m, on which 
R,J~) - E;,,, E %,,,, then RJ6) > EC,,,,, + R,,(S,J for A E A,,. By subcom- 
pactness there exists a further subsequence and an estimator $ such that in 
the limit R(1,, a)>&+ R(I,, 8) and R(J, 6)> R(i, $) for all 1 E A. By 
Lemma 2.2, R( , 6) is continuous on the interior of the finite risk set. Then 
R( , b) is finite valued on this set and, by Lemma 2.2, continuous on 
A*(s). Since A is dense, it follows that by taking limits 

R(;I, 6) > R(i, $) for all %fzA*(6) 

and 

R(h, 6)2R(&, F)+E. 

This contradiction proves the lemma. 

THEOREM 2.6. Let 6 be an estimator and i, CA*(~) be a preferred 
parameter and A*(s) and A, be as above. A necessary and sufficient con- 
dition that 6 be admissible is that there exist a sequence of finite measures 
{v,, n > 1) with v, discrete and supported on A, such that vn( { 1,) ) = 1 and 
such that ifs,, is Bayes relative to v, then 

lim 
s 

(R(& S) - R(;1,S,)) v,(dA) = 0; WC1 )I 
*-cc 

lim 6,(x)=6(x) for all x such that h(x)>O. (2.5(2)) 
n-cc 

Proof: By Lemma 2.5, we may suppose the sequence E, 10 such that 
R,(S) - s,,P, 4 3,, z . Then, since S?,,, is closed and convex, there exists a 
vector a, E RP and a constant c such that 

a;(R,(6)--c,e’,)<c< inf aAx. 
XELS”, 

(2.6) 

Consequently if b E RP, , m > 0 is an integer, and x E 9?,,, then 
c<ak(x+mb) and m-‘(c-a;x) <sib. Thus in the limit as m + 00, 
O,<a’b for all bER”,. Thus the components of a,, are nonnegative and 
condrtion (2.6) implies aA2,, # 0. Thus we may renormalize so the first 
coordinate of a, is 1 and consider the entries of a, as the masses of the 
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measure v, . Then (also change the value of c) f R(IZ, 8) v,(A) - E, 6 cd 
{ NJ”, &J v,(dJ), f rom which (2.5( 1)) follows. By a standard calculation 

0 = lim E 1 J c(A) h(x) A(-Y+a@t) 
n-rm i= I .x230 

x (ef(J(x) - UX)))~ v,W) 

x (4(4x) -&Ax)))*. 

Hence if h(x) > 0 it follows that 6(x) = lim, _ co 6,(x). 
Conversely, to show admissibility, suppose S’ is as good as S. Then 

(2.5(l)) implies 

lim s (R(J., S’) - R(A, 6,)) v,(d) = 0, (2.7) n -+ ,m 

so that as argued above, 

0 = lim $J 1 ~(2,) h(x) A!“+“~‘~)(e:(6’(x) - S,(x)))*. 
n+m i= I .x20 

(2.8) 

Thus, if h(x) > 0 it follows that 

S’(x) = lim 6,(x)=6(x). 
n-m (2.9) 

This proves 6 to be admissible. 1 

3. AN EXAMPLE 

In this section a two-dimensional (p = 2) example is given of an 
admissible estimator having infinite risk on a half-space. This is same as 
Example 7.4 of Brown and Farrell [2] but is given a different treatment 
here. To simplify notation in this section we will write A’= (A,, A,), 
6’= (6,, 6,), and (x, y) for points of the lattice. Let {a,, n 2 1) be a 
positive real number sequence such that &, @Y/y! converges if 0 < 1< 1 
and diverges if A >, 1. We show for squared error loss that the estimator 
6’(x, y)‘= (a,, 0) is admissible and has infinite risk on the half-space 
A, 2 1. In fact the risk function is As + C, (a, - A,)* exp( - A,) A-$/y! which 
converges if and only if 1, < 1. 
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To show admissibility, suppose 6 is as good as 6’. Let JJ,, 2 0 be the least 
integer y such that there exists an integer x 3 0 with 6(x, J’~) # 6’(x, yO). 
We show y, 2 0 cannot exist as follows. After cancellation of equal terms in 
the risk functions the comparison is 

Using continuity of the risk functions we may divide by ip” and set & = 0 
to obtain 

-<c ((6,(x, Yo)-M2+ (62(x, Yo))') G,, 0) 44 Yo) Ai' 

(3.1) 

For the one-dimensional problem, since a,, > 0, this constant is a uniquely 
determined Bayes estimator, hence is admissible. Then (3.1) implies 
6,(x, Yo) = a,, for all xz 0, which implies 6,(x, y,) = 0 for all ~20. This 
contradicts the definition of y,. Consequently y, 2 0 cannot exist and 6 = 6’ 
for all (x, y). 
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